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Abstract

This paper describes the design and performance of a new
APS-sized CCD image sensor using an advanced 6.8 um pixel. The
pixels are arranged in a 3970 (H) x 2646 (V) format to support a
3:2 aspect ratio. Unique to this pixel is the implementation of an
under-the-field oxide (UFOX) lateral overflow drain (LOD) and
thin light-shield technology that provides higher charge capacity,
higher quantum efficiency, and wider incident angle response.
Each pixel contains a microlens to improve sensitivity and a dual-
split HCCD shift register with high sensitivity amplifiers, which
are used to increase frame rate while lowering noise.

Introduction

APS class cameras require high performance image sensors
with ever demanding requirements. Each new generation of image
sensor requires potentially more pixels, improved pixel
performance, or new operating features. Using technology that was
originally developed for the medium format camera market [1],
the pixel performance and frame rate of an existing 10 Mp, 6.8 um
image sensor was improved.

Design

Figure 1 shows the 10 Mp full-frame image sensor block
diagram. It consists of a vertical CCD (VCCD) array of pixels that
cover a photoactive area of 27 X 18 mm. A dual-split horizontal
CCD (HCCD) register accepts each line from the VCCD and shifts
pixels to two high-sensitivity output nodes in a serial fashion. This
arrangement reduces the frame readout time by approximately one
half compared to the older, 10 Mp single output device. The
design supports a data rate of 48 Mpixels/s and produces a
maximum frame rate of 3.7 fps. The device is housed in a 60-pin
PGA ceramic package with 0.100 in. pin spacing.
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Figure 1. 10 Mp image sensor block diagram.
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Pixel

Each pixel consists of single polysilicon and single ITO gates,
as shown in Fig. 2. Barrier regions (B1, B2) are formed within the
silicon substrate to confine the signal during exposure and readout.
In addition, a (B3) barrier region is formed to skim off excess
signal in the event exposure in the pixel exceeds its capacity. The
LOD provides the means to drain any excessive signal off-chip,
and channel stops (Chst) serve to isolate pixels horizontally. Figure
3 shows an electrostatic model of the potentials developed during
operation. The photosensitive fill factor of this pixel is 69%,
resulting from the fact that the LOD region does not collect signal.
To increase sensitivity, the pixel is designed with a reduced
aperture light shield and overlying microlens. The aperture
opening is first positioned to expose only the ITO gate, which has
superior light transmission characteristics compared to the
polysilicon gate [2]. The microlens position, height, and shape are
then designed such that light is directed away from the insensitive
LOD region, and less transmissive polysilicon gate, and focused
into the center of the aperture opening. Between the microlens and
light shield, each pixel is selectively covered with a red, green, or
blue color filter material (CFA) in a Bayer [3] configuration to
produce color images. With this structure, the effective
photosensitive fill factor is increased to 78%.
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Figure 2. Top view sketch of 6.8 um pixel design.
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Figure 3. 6.8 um pixel channel potential model. V1 represents the polysilicon
gate electrode and V2 is the ITO electrode.
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UFOX LOD [4]

To improve charge capacity, the LOD width is reduced to
enlarge the area used to collect signal. In order to maintain the
same antiblooming performance, it becomes necessary to decrease
the resistance of the drain by increasing the dose of the implant.
The problem with this approach in the conventional LOD
structure, shown in Fig. 4, is that a gate-dependent breakdown
occurs at a lower voltage as the LOD implant is increased. The
source of the breakdown has been identified as band-band
tunneling caused by high electric fields at the silicon-to-silicon
dioxide interface. To alleviate this problem, the LOD implant is,
instead, formed underneath the thick field oxide similar in nature
to the channel stop formation, as shown in Fig. 5. This shifts the
position and magnitude of the maximum electric field region under
the field oxide where the overlying gate electrodes have almost no
influence. The UFOX LOD, therefore, enables the use of higher
implant doses without the breakdown problem, and the LOD width
can be reduced without compromising antiblooming protection.
More significant is the fact that, with a smaller LOD width, the
charge capacity and quantum efficiency of the pixel is increased
because of a higher fraction of charge collection area. Last,
because more of the gate area is placed over a thick (field) oxide
region, the clock capacitance is reduced, resulting in improved line
rates and lower power dissipation.
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Figure 4. Electrostatic model of conventional LOD. The view shown is the
horizontal cross-section through the B3 region of Fig. 2.
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Figure 5. Electrostatic model of UFOX LOD.
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Thin Light Shield [5]

Common among current KAF-series image sensors is a metal-
lization process that uses a bilayer of thick aluminum (Al) on top
of a thinner TiW film. The two films are deposited in sequence
and subsequently patterned and etched as one. This bilayer stack is
used for routing clock and bias lines to gates and drains as well as
for forming the light shield in the array of pixels. The pixel light
shield is used in two ways. First, pixels around the periphery of the
device are completely covered with the light shield in order to
establish a good dark reference that tracks with temperature, and,
secondly, the light shield is placed around the border of photo-
active pixels in order to reduce color crosstalk between adjacent
pixels. The thin light shield process is an idea that simply removes
the aluminum only in areas where photosensitive pixels are to be
defined. Holes in the remaining thin TiW layer are then etched to
form apertures. This leaves the TiW film to provide color separa-
tion while the rest of the device remains as an Al/TiW stack. The
optical density that a TiW-only film exhibits is about 3.0. This
optical density is acceptable in photosensitive pixels but not in the
dark reference pixels. Hence, the aluminum is retained over dark
pixels. Using the thin light shield technology, the topography of
the pixel is improved and the angle response is extended as light is
more easily focused through the aperture opening, as illustrated in
the SEM cross-sections of Figs. 6 and 7.
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Figure 6. SEM vertical cross-section of older 6.8 um pixel with standard
Al/TiW light shield process. Sketches of light rays are used to illustrate how
the light is directed through the light shield aperture opening. When the rays
enter at an angle, the focused ray bundle is translated away from the center
of the aperture opening (C.) and one of the light rays (X) hits the opaque
light shield and cannot be collected in the pixel, resulting in a loss of signal.
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Figure 7. SEM vertical cross-section of new 10 Mp, 6.8 um pixel device with
TiW-only light shield process. Using similar illustrations of light ray sketches
as in Fig. 6, note how it is possible to accept a wider range of incident light
angles without a loss in signal.
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Optical Measurements

Quantum efficiency has been measured on the 10 Mp device
and is compared against previous work. Referring to Fig. 8, peak
response values achieved are 35%, 42%, and 38%, for red, green,
and blue, respectively. This exceeds the values achieved from the
older 10 Mp, 6.8 um microlens design where red, green, and blue
QE was measured at 30%, 34%, and 31%, respectively, and can be
attributed to a larger aperture size (enabled by UFOX LOD) and
reduced CFA layer thicknesses. The saturation-based ISO is re-
duced from 92 (older 6.8 um pixel) to 85 (new 6.8 um pixel)
where the increase in QE and responsivity are outweighed
compared to the increase in charge capacity. Noise-limited
exposure index of the new 6.8 um pixel would be higher.
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Figure 8. Device quantum efficiency performance.

The (green) pixel responses to incident light angles are shown
in Fig. 9. This measurement is made along the vertical (short or
worst case) dimension of the chip under white light conditions.
White light conditions are defined as the illumination required to
balance the output of red, green, and blue pixels at 0° incident
angles. The angle response is found to be +17° @ 80% roll-off
which is significantly improved over previous work (+12°).
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Figure 9. Vertical angle response in comparison to older 10 Mp device.

Electrical Measurements

Compared to the previous 6.8 wm pixel performance, the
charge capacity has increased from 40 ke- to 66 ke-, and the noise
has been reduced from 17 e- rms to 15 e- rms. The noise reduction
is largely the result of improving the output-referred charge-to-
voltage gain from 17.5 uV/e- to 24.5 uV/e-. Dynamic range of the
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new pixel, therefore, is 72.9 dB—an increase of 5.7 dB over the
previous 6.8 um pixel design.

Conclusion

The design and performance of a new 10Mp CCD imaging
device has been described. This device incorporates UFOX LOD
and thin light shield technologies that enable increased charge
capacity, higher quantum efficiency, and improved angle response.
A summary comparison of other key performance parameters is
shown below.

Performance Summary:

Parameter Symbol |New 10 Mp|Old 10 Mp Unit
Pixel Size P 6.8 6.8 um Sq
Charge Capacity Naat 66 40 ke-
Output Sensitivity S 24.5 17.5 uVlie-
Noise N. 15 17 e- rms
Dynamic Range DR 72.9 67.4 dB
Quantum Efficiency NeNeNr | 38,42,35 31,34,30 % Peak
Angle Response AR +17 +12 Deg @ 80%
Antiblooming Xap >1000 >1000 x Esat
Dark Current Ty 2 2 pA/cm® @ 25°C
Base ISO (Green) ISO 85 92 3200 °K + IR
Responsivity Rg,RG,Rr | 39,70,59 30,47.47 ke-/lux-sec
Frame Rate FR 3.7 2.1 fps
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